Journal Menu
Submit Manuscript via ScholarOne

EURASIA Journal of Mathematics, Science and Technology Education
Volume 12, Issue 9 (September 2016), pp. 2481-2502

DOI: 10.12973/eurasia.2016.1299a

Downloaded 6908 times.

Research Article

Published online on Jun 29, 2016

How to reference this article?


Student Difficulties in Mathematizing Word Problems in Algebra

Al Jupri & Paul Drijvers


To investigate student difficulties in solving word problems in algebra, we carried out a teaching experiment involving 51 Indonesian students (12/13 year-old) who used a digital mathematics environment. The findings were backed up by an interview study, in which eighteen students (13/14 year-old) were involved. The perspective of mathematization, i.e., the activity to transform a problem into a symbolic mathematical problem, and to reorganize the mathematical system, was used to identify student difficulties on the topic of linear equations in one variable. The results show that formulating a mathematical model—evidenced by errors in formulating equations, schemas or diagrams—is the main difficulty. This highlights the importance of mathematization as a crucial process in the learning and teaching of algebra.

Keywords: algebra education, digital mathematics environment, linear equations in one variable, mathematization, word problems

  1. Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics,14(3), 24–35.
  2. Barkatsas, A., Kasimatis, K., & Gialamas, V. (2009). Learning secondary mathematics with technology: Exploring the complex interrelationship between students’ attitudes, engagement, gender and achievement. Computers & Education, 52(3), 562–570.
  3. Bokhove, C., & Drijvers, P. (2010). Symbol sense behavior in digital activities. For the Learning of Mathematics,30(3), 43–49.
  4. Bokhove, C., & Drijvers, P. (2012). Effects of feedback in an online algebra intervention. Technology, Knowledge and Learning, 17(1-2), 43–59.
  5. Boon, P. (2006). Designing didactical tools and micro-worlds for mathematics education. In C. Hoyles, J. B. Lagrange, L. H. Son, & N. Sinclair, Proceedings of the 17th ICMI Study Conference;
  6. Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A.F. Coxford (Ed.), The ideas of algebra, K–12(1988 Yearbook) (pp. 20–32). Reston, VA: National Council of Teachers of Mathematics.
  7. Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of middle grade students: A review. Journal of Mathematical Behavior32(3), 613–632.
  8. Carpraro, M. M., & Joffrion, H. (2006). Algebraic equations: Can middle school students meaningfully translate from words to mathematical symbols? Reading Psychology, 27(2) 147–164.
  9. Clement, J. (1982). Algebra word problem solutions: Thought processes underlying a common misconception.Journal for Research in Mathematics Education, 13(1), 16–30.
  10. De Lange, J. (1987). Mathematics insight and meaning. Dissertation. Utrecht, the Netherlands: OW & OC.
  11. De Lange, J. (2006). Mathematical literacy for living from OECD-PISA perspective. Tsukuba Journal of Educational Study in Mathematics. Vol. 25. Special Issue on The APEC-TSUKUBA International Conference "Innovative Teaching Mathematics through Lesson Study" (pp. 13-35). Tokyo, Japan: University of Tsukuba.
  12. Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and the development of the function concept: from repeated calculations to functional thinking. International Journal of Science and Mathematics Education10(6), 1243–1267.
  13. Drijvers, P., & Doorman, M. (1996). The graphics calculator in mathematics education. Journal of Mathematical Behavior15(4), 425–440.
  14. Drijvers, P. (2000). Students encountering obstacles using a CAS. International Journal of Computers for Mathematical Learning, 5(3), 189–209.
  15. Drijvers, P. H. M. (2003). Learning algebra in a computer algebra environment: Design research on the understanding of the concept of parameter. Dissertation. Utrecht, the Netherlands: CD-B Press.
  16. Drijvers, P., Boon, P., & Van Reeuwijk, M. (2010). Algebra and technology. In P. Drijvers (Ed.), Secondary algebra educationRevisiting topics and themes and exploring the unknown (pp. 179–202). Rotterdam, the Netherlands: Sense.
  17. Drijvers, P., Boon, P., Doorman, M., Bokhove, C., Tacoma, S. (2013). Digital design: RME principles for designing online tasks. ICMI Study 22.
  18. Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht: Kluwer Academic Publishers.
  19. Ghosh, J. B. (2012). Learning mathematics in secondary school: The case of mathematical modeling enabled by technology. Regular lecture 12th ICME conference;
  20. Gravemeijer, K. P. E. (1994). Developing realistic mathematics education. Utrecht: CD-B Press.
  21. Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27(1), 59–78.
  22. Jupri, A., Drijvers, P., & Van den Heuvel-Panhuizen, M. (2014). Difficulties in initial algebra learning in Indonesia.Mathematics Education Research Journal, 26(4), 683-710.
  23. Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317–326.
  24. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorial data. Biometrics, 33(1), 159–174.
  25. Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review, 22(3), 215–243.
  26. Linchevski, L. (1995). Algebra with numbers and arithmetic with letters: A definition of pre-algebra. Journal of Mathematical Behavior14(1), 113–120.
  27. MacGregor, M., & Stacey, K. (1998). Cognitive models underlying algebraic and non-algebraic solutions to unequal partition problems. Mathematics Education Research Journal, 10(2), 46-60.
  28. Mullis, I. V. S., Martin, M. O., Foy, P., in collaboration with Olson, J. F., Preuschoff, C., Erberber, E., Arora, A., & Galia, J. (2008). TIMSS 2007 international mathematics report: Findings from IEA’s trends in international mathematics and science study at the fourth and eighth grades. Boston: TIMSS & PIRLS International Study Center.
  29. Sembiring, R. K., Hadi, S., & Dolk, M. (2008). Reforming mathematics learning in Indonesian classrooms through RME. ZDM, The International Journal on Mathematics Education, 40(6), 927–939.
  30. Stacey, K., & MacGregor, M. (2000). Learning the algebraic method of solving problems. Journal of Mathematical Behavior, 18(2), 149–167.
  31. Thomas, M., & Tall, D. (1991). Encouraging versatile thinking in algebra using the computer. Educational Studies in Mathematics, 22(2), 125–147.
  32. Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics instruction-The Wiskobas project. Dordrecht, the Netherlands: Kluwer Academic Publishers.
  33. Van Amerom, B. A. (2003). Focusing on informal strategies when linking arithmetic to early algebra. Educational Studies in Mathematics, 54(1), 63-75.
  34. Van den Heuvel-Panhuizen, M. (2000). Mathematics education in the Netherlands: A guided tour. Freudenthal Institute Cd-rom for ICME9. Utrecht: Utrecht University.
  35. Van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1) 9–3.
  36. Van den Heuvel-Panhuizen, M., & Drijvers, P. (2013). Realistic Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education. Dordrecht, Heidelberg, New York, London: Springer.
  37. Warren, E. (2003). The role of arithmetic structure in the transition from arithmetic to algebra. Mathematics Education Research Journal, 15(2), 122–137.
  38. Zulkardi. (2002). Developing a learning environment on realistic mathematics education for Indonesian student teachers. Dissertation. Enschede: University of Twente.