Journal Menu
Submit Manuscript via ScholarOne

EURASIA Journal of Mathematics, Science and Technology Education
Volume 13, Issue 6 (July 2017), pp. 1893-1918

DOI: 10.12973/eurasia.2017.01207a

Downloaded 105 times.

Research Article

Published online on May 09, 2017

How to reference this article?

 

Meta Didactic-Mathematical Knowledge of Teachers: Criteria for The Reflection and Assessment on Teaching Practice

Adriana Breda, Luis Roberto Pino-Fan & Vicenç Font

Abstract

The objective of this study is to demonstrate that the criteria of didactical suitability, proposed by the theoretical framework known as the Onto-Semiotic Approach (OSA) of mathematical knowledge and instruction, are powerful tools for organizing the reflection and assessment of instruction processes carried out by mathematics teachers. To this aim, the results of a multiple case study are presented which prove that when teachers are faced with the task of evaluating processes of instruction, they employ-either implicitly or explicitly- the OSA criteria of didactical suitability (epistemic, cognitive, affective, mediational, interactional and ecological). Therefore, the explicit application of said criteria in teachers’ education cycles contributes to the development of the didactic analysis competence that is necessary for teachers to be able to reflect on their own practices.

Keywords: teacher training, didactic-mathematical knowledge, competences, didactic analysis, didactical suitability


References
  1. Alsina, A., & Domingo, M. (2010). Idoneidad didáctica de um protocolo sociocultural de enseñanza y aprendizaje de las matemáticas [Didactical suitability of a sociocultural mathematics teaching and learning protocol]. Revista Latinoamericana de Investigación en Matemática Educativa, 13(1), 7-32.
  2. Breda, A., & Lima, V. M. R. (2016). Estudio de caso sobre el análisis didáctico realizado en un trabajo final de un máster para profesores de matemáticas en servicio [Case study on the didactic assessment over a final work of a master for mathematics teachers in service]. REDIMAT, 5(1), 74-103. doi: 10.17583/redimat.2016.1955.
  3. Breda, A., Font, V., & Lima, V. M. (2016). Análise das Propostas de Inovação nos Trabalhos de Conclusão de Curso de um Programa de Mestrado Profissional em Matemática [Analysis of innovation proposals from the final course assignments in a professional master program in mathematics]. Avances de Investigación en Educación Matemática, 10(2), 53-72.
  4. Breda, A., Font, V., & Lima, V. M. R. (2015a). A noção de idoneidade didática e seu uso na formação de professores de matemática [A notion the didactical suitability and their use in training math teacher]. Jornal Internacional de Estudos em Educação Matemática, 8(2), 4-41.
  5. Breda, A., Font, V., & Lima, V. M. R. (2015b). Propuestas de incorporación de contenidos matemáticos de nivel superior en la educación básica: un estudio de los trabajos finales de curso del Máster Profesional en Matemáticas en la Red Nacional [Incorporation of higher education content on basic education proposals: a study of the final course assignments of National Network Professional Master Programme in Mathematics, Brazil]. Revista Brasileira de Ensino de Ciência e Tecnologia, 8(3), 136-148. doi:10.3895/rbect.v8n3.3189
  6. Breda, A., Lima, V. M. R., & Pereira, M. V. (2015). Papel das TIC nos trabalhos de conclusão do mestrado profissional em matemática em rede nacional: o contexto do Rio Grande do Sul [Role of ICT in term papers of the professional master in mathematics in national network: the context of Rio Grande do Sul]. Práxis Educacional (Online), 11(19), 213-230.
  7. Breda, A., Pino-Fan, L., & Font, V. (2016). Establishing criteria for teachers’ reflection on their own practices. In Csíkos, C., Rausch, A., & Szitányi, J. (Eds.), Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 283). Szeged, Hungary: PME.
  8. Cobb, P., Confrey, J., di Sessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13.
  9. Contreras, A., García, M., & Font, V. (2012). Análisis de un proceso de estudio sobre la enseñanza del límite de una función [Analysis of a process of statement on the teaching of the limit of a function]. Bolema, 26(42B), 667-690.
  10. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes). (2013). Avaliação suplementar externa do programa de mestrado profissional em matemática em rede nacional (PROFMAT).
  11. Davis, B. (2008). Is 1 a prime number? Developing teacher knowledge through concept study. Mathematics Teaching in the Middle School (NCTM), 14(2), 86-91.
  12. Davis, B., & Renert, M. (2013). Profound understanding of emergent mathematics: broadening the construct of teacher’ disciplinary knowledge. Educational Studies in Mathematics Education, 82(2), pp. 245-265. doi: 10.1007/s10649-012-9424-8
  13. Fernández, C., & Yoshida, M. (2004). Lesson study: a Japanese approach to improving mathematics teaching and learning. Mahwah, NJ: Erlbaum.
  14. Fernández, C., Llinares, S., & Valls, J. (2012). Learning to notice students’ mathematical thinking through on-line discussions. ZDM. The International Journal on Mathematics Education Online First. doi: 10.1007/s11858-012-0425-y.
  15. Font, V. (2011). Competencias profesionales en la formación inicial de  profesores de matemáticas de secundaria [Professional competences in the initial training of high school mathematics teachers]. Unión, 26(1), 9-25.
  16. Font, V. (2015). Pauta de análisis y valoración de la idoneidad didáctica de procesos de enseñanza y aprendizaje de la matemática [Guideline for the analysis and assessment of the didactical suitability of the mathematics teaching and learning processes]. Unpublished manuscript. Departamento de Didáctica de las CCEE y la Matemática, Universitat de Barcelona.
  17. Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97–124.
  18. Font, V., Planas, N., & Godino, J. D. (2010). Modelo para el análisis didáctico en educación matemática [A model for the study of mathematics teaching and learning processes]. Infancia y Aprendizaje, 33(1), 89-105.
  19. Giménez, J., Font, V., & Vanegas, Y. (2013). Designing professional tasks for didactical analysis as a research process. In C. Margolinas (Ed.), Task Design in Mathematics Education. Proceedings of ICMI Study 22 (pp. 581-590). Oxford: ICMI studies.
  20. Godino, J. D. (2013). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas [Indicators of didactical suitability for mathematics teaching and learning processes]. Cuadernos de Investigación y Formación en Educación Matemática, 8(11), 111-132.
  21. Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematicals education. ZDM. The International Journal on Mathematical Education, 39(1), 127-135. doi: 10.1007/s11858-006-0004-1
  22. Godino, J. D., Batanero, C., & Font, V. (2008). Um enfoque onto-semiótico do conhecimento e da instrução matemática [The onto-semiotic approach to research in mathematicals education]. Acta Scientiae. Revista de Ensino de Ciênciase Matemática, 10(2), 7-37.
  23. Godino, J. D., Bencomo, D., Font, V., & Wilhelmi, M. R. (2006). Análisis y valoración de la idoneidad didáctica de procesos de estudio de las matemáticas [Analysis and assesssment of the didactical suitability the process study of mathematics]. Paradigma, XXVII(2), 221-252.
  24. Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (2016). Articulando conocimientos y competencias del profesor de matemáticas: El modelo CCDM [Articulating mathematics teachers' knowledge and competences: the DMKC model]. In C. Fernández, J. L. González, F. J. Ruiz, Juan A. Macías, A. Jiménez, M. T. Sánchez, P. Hernández, T. Fernández & A. Berciano (Eds.), Investigación en Educación Matemática XX, (pp. 257-265). Málaga: SEIEM.
  25. Godino, J. D., Giacomone, B., Batanero, C., & Font, V. (in press). Enfoque Ontosemiótico de los Conocimientos y Competencias del Profesor de Matemáticas [Onto-Semiotic Approach to Mathematics Teacher’s Knowledge and Competences]. Bolema.
  26. Gómez, P. (2006). Análisis didáctico en la formación inicial de profesores de matemáticas de secundaria [Didactical analysis in the initial training of high school mathematics teachers]. In P. Bolea, M. J. González, & M. Moreno (Eds.), X Simposio de la Sociedad Española de Investigación en Educación Matemática (pp. 15-35). Huesca: Instituto de Estudios Aragoneses.
  27. Guzmán, M. (2007). Enseñanza de las ciencias y la matemática [Teaching of science and mathematics]. Revista Iberoamericana de Educación, 43(1), 19-58.
  28. Hill, H. C., Ball, D. L., & Schlling, S. G. (2008). Unpacking pedagogical content knowledge of students. Journal for Research in Mathematicals Education, 39(4), 372-400.
  29. Liston, M. (2015). The use of video analysis and the Knowledge Quartet in mathematics teacher education programmes. International Journal of Mathematical Education in Science and Technology, 46(1), 1-12. doi:10.1080/0020739X.2014.941423
  30. Lopes, A. (2014). Um relato sobre à introdução às somas de Riemann na Educação Básica (Master Dissertation). Retrieved from https://sca.profmat-sbm.org.br/tcc_get.php?cpf=91781000034&d=20160914204047&h=8da595ae65a2cd650272d6e73dd8669d55dd87f5
  31. Mason, J. (2002). Researching your own practice. The discipline of noticing. London: Routledge-Falmer.
  32. NCTM. (2000). Principles and Standards for School Mathematics. Reston: VA and National Council of Teachers of Mathematics.
  33. Nilssen, V. (2010). Encouraging the habit of seeing in student teaching. Teaching and Teacher Education, 26(3), 591-598. doi:10.1016/j.tate.2009.09.005
  34. Pino-Fan, L., Assis, A., & Castro, W. F. (2015). Towards a methodology for the characterization of teachers’ didactic-mathematical knowledge. Eurasia Journal of Mathematicals, Science & Technology Education, 11(6), 1429-1456. doi: 10.12973/eurasia.2015.1403a.
  35. Pino-Fan, L., Assis, A., & Godino, J. D. (2015). Análisis del proceso de acoplamiento entre las facetas epistémica y cognitiva del conocimiento matemático en el contexto de una tarea exploratorio-investigativa sobre patrones [Analysis of the coupling process between the epistemic and cognitive facets of mathematical knowledge in the context of an exploratory-investigative task about patterns]. Educación Matemática, 27(1), 37-64.
  36. Pino-Fan, L., Godino, J. D., & Font, V. (2016). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative. Journal of Mathematical Teacher Education. Advance online publication. doi:10.1007/s10857-016-9349-8.
  37. Pochulu, M., & Font, V. (2011). Análisis del funcionamiento de una clase de matemáticas no significativa [Analysis of the functioning of a non-significant mathematics class]. Revista Latinoamericana de Investigación en Matemática Educativa, 14(3), 361-394.
  38. Pochulu, M., Font, V., & Rodríguez, M. (2016).  Desarrollo de la competencia en análisis didáctico de formadores de futuros profesores de matemática a través del diseño de tareas [Development of the competence in didactic analysis of training of future mathematics teachers through task design]. Revista Latinoamericana de Investigación en Matemática Educativa-RELIME, 19(1), 71-98. doi: 10.12802/relime.13.1913
  39. Ramos, A. B., & Font, V. (2008). Criterios de idoneidad y valoración de cambios en el proceso de instrucción matemática [Suitability and assessment criteria of changes in the mathematics instruction process]. Revista Latinoamericana de Investigación en Matemática Educativa, 11(2), 233-265.
  40. Ramos, A.B. (2006). Objetos personales matemáticos y didácticos del profesorado y cambios institucionales. El caso de la contextualización de las funciones en una facultad de ciencias económicas y sociales (Doctoral dissertation). Retrieved from http://www.tesisenxarxa.net/TESIS_UB/AVAILABLE/TDX-0330106-090457
  41. Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The Knowledge Quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255-281. doi:10.1007/s10857-005-0853-5
  42. Rubio, N. (2012). Competencia del profesorado en el análisis didáctico de prácticas, objetos y  procesos matemáticos. (Doctoral dissertation). Retrieved from http://www.tdx.cat/handle/10803/294031
  43. Schoenfeld, A., & Kilpatrick, J. (2008). Towards a theory of proficiency in teaching mathematicals. In D. Tirosh, & T. L. Wood (Eds.), Tools and processes in mathematicals teacher education (pp. 321-354). Rotterdam: Sense Publishers.   
  44. Schön, D. (1983). The reflective practitioner. New York: Basic Books.
  45. Schön, D. (1987). Educating the reflective practitioner. Toward a new design for teaching and learning in the professions. San Francisco: Jossey-Bass Publishers.   
  46. Seckel, M. J. (2016). Competencia en análisis didáctico en la formación inicial de profesores de educación general básica con mención en matemática. (Doctoral dissertation). Retrieved from http://www.tdx.cat/handle/10803/385915
  47. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
  48. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22.
  49. Silverman, J., & Thompson, P. (2008). Toward a framework for the development of mathematical knowledge for teaching. Journal of mathematics teacher education, 11(6), pp. 499-511. doi:10.1007/s1085700890895.
  50. Sociedade Brasileira de Matemática (SBM). (2013). Relatório final do procedimento de análise quali-quantitativa de perfis de candidatos e aprovados no Mestrado Profissional em Matemática em Rede Nacional (PROFMAT).
  51. Stahnke, R; Schueler, S., & Roesken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: a systematic review of empirical mathematics education research. ZDM. The International Journal on Mathematics Education, 48(1), 1-27. doi:10.1007/s11858-016-0775-y
  52. Star, J. R., Lynch, K., & Perova, N. (2011). Using video to improve preservice mathematics teachers' abilities to attend to classroom features: A replication study. In M. G. Sherin, V. R. Jacobs, & R. A. Philipp (Ed.), Mathematics teacher noticing: Seeing through teachers’ eyes (pp. 117-133). New York: Routledge.
  53. Steffe, L., & Thompson, P. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. Kelly &R. Lesh (Eds.), Handbook of research design in mathematicals and science education (pp. 267-306). Mahwah: NJ: Lawrence Erlbaum Associates.
  54. Sullivan, P. & Wood, T. (2008). The International Handbook of Mathematics Teacher Education: Vol. 1. Knowledge and beliefs in mathematics teaching and teaching development. Rotterdam, The Netherlands: Sense publishers.
  55. Sun, J., & van Es, E. A. (2015). An exploratory study of the influence that analyzing teaching has on preservice teachers’ classroom practice. Journal of Teacher Education, 66(3), 201-214. doi:10.1177/0022487115574103
  56. Turner, F. (2012). Using the knowledge quartet to develop mathematics content knowledge: The role of reflection on professional development. Research in Mathematics Education, 14(3), 253-271. doi:10.1080/14794802.2012.734972